
Testing the SETIHacker Hypothesis
Marcus Leech, VE3MDL

Seti League Observer

Abstract

In a recent paper1, Richard Carrigan forms a hypothesis
on the existence of a malevolent ET signal, intended to
infect another intelligent civilizations computers with a
destructive virus. In this paper, we test some of the
elements of this hypothesis and find them to be
unsupportable.

Introduction

In a PhD thesis by Leigh2, it is shown quite convincingly that oneway digital
communications from an ET civilization within a few dozen lightyears from earth is
entirely within the realm of the physically possible. Leigh uses a variant of the well
known Shannon Law to show that such communications paths are entirely possible,
given a suitably powerful transmitter, prudent selection of wavelength, and receiving
technology no more advanced than currentday technology in use by radio
astronomers here on earth.

A later paper by Carrigan posits the existence of malevolent signals that could
constitute a computer virus, and that SETI researchers should take special care,
assuming that they ever find a suitable signal, not to allow the resulting “bits” to be
executed as code. Carrigan recommends a socalled quarantine for SETI data, in
order to prevent a theorized globally catastrophic outbreak of computer malaise.

1 See: http://home.fnal.gov/~carrigan/SETI/SETI%20Hacker_AC03IAA8306.doc
2 See: http://seti.harvard.edu/grad/dpdf/thesislt.pdf

The communications channel

Carrigans brief paper assumes a channel of approximately 100kbit/sec capacity,
based on reasonable assumptions about antennae sizes, transmit power, receiver
noise figure, etc. None of the assertions about the Shannon Law capacity of the
hypothetical communications channel can reasonably be disputed.

For purposes of this paper, we'll assume a 100kbit/sec channel from our purported
ET adversary. We'll also assume that they have correctly surmised that target
civilizations have converged on the use of binary coding for machine logic systems.
That humans happened to pick binary was not entirely a forgone conclusion at the
start of the 20th century, and it would be wise to remember that other systems of
machine logic briefly occupied scientific and engineering imagination—trinary and
decimal were not unheard of, as well as other multilevel logic systems. We also
assume that our ET has an Arecibosized antenna, with high efficiency, and that we
use an Arecibosized antenna, or an array with equivalent collecting area and
aperture efficiency.

So, for purposes of further dialog, we'll assume that our ET knows its victim is going
to use binary.

We also assume that once our hapless victims (the SETI astronomers) have found
such a thunderinglyhuge signal, that they'll continue to track it precisely, and record
every single bit of the demodulated data. Under the assumptions put forth by
Carrigan, a wavelength of 3 cm is chosen for the communications channel, which
means that a beam width of only 0.007 degrees (for Arecibosized antennas on each
end) must be maintained accurately to track the signal. Our malevolent ET must also
cause their antenna to track the tiny beam at a particular “target” for long enough to
have some reasonable effect. We assume that they've already identified us by our TV
and radio transmissions as a likely target.

ET hacker assumptions

Overall in this paper, we'll be making assumptions that are as generous as possible in
favour of our ET hacker. We can assume that they're at least as smart as we are, but
probably not ordersofmagnitude smarter, since if they were, they wouldn't bother
attacking a neighbouring star systems computer networks. They'd probably find

other things to amuse themselves.

We'll also assume that it isn't a problem that there are a myriad of possible computer
architectures “in play” at any given time in human history, many of them
significantly different from one another.

Since our nefarious ET friends theoretically have no way of conducting a blackbox
analysis of their target (since the communications path isn't twoway in any practical
sense), they cannot apply the usual blackbox techniques for determining how the
target system works.

We've already said that they must have assumed a binary system for machine logic.
There are a very few other assumptions that our wicked ET could make.

Human computing activity in the last 50 years has nearlyuniversally settled on a
collection of bits, called a byte, to represent data. Many types of data are encoded
into these “bytes”. But the byte emerged not out of natural, overwhelming necessity,
but almost entirely by cultural accident. The English language, having 26 characters
in it, can be represented handily in both upper and lower case forms using roughly 6
bits. Add in some punctuation, and a few control characters, and the nearlyarbitrary
boundary at eight bits emerges. It could easily have emerged that we'd settled on 7, 9,
10, or 11 bits as “natural quantum”. References to computers, with superficial
representations of their architecture didn't start to appear in popular human culture to
any great degree until the 1980s. We can assume that our smart ET criminals will
have used the subtle clues in our television and radio transmissions to intuit that we
use a natural bitcollection of eight bits, and reasonable multiples thereof. It's a bit of
a stretch, but we try to put the Carrigan hypothesis in the best possible light in order
to proceed.

Our ET hackers could assume that buffer overruns were a very common flaw in
computer programming, since presumably their own civilization has been through it
themselves. Which means that they have to decide how big our buffers are, and how
to best make use of overflow.

For example, here on earth, buffer sizes happen to be picked based on multiples of
512, which is a power of two. Our ET can assume that data buffers will also be sized
to be a power of 2, since we use a binary logic system. Using that logic, and
assuming that the victim has technology within a couple of hundred years of the

attackers, then buffer sizes could range between 128 bytes and 65536 bytes (1024
bits and 524288 bits), if one also assumes buffer sizes that are exact powers of 2,
that's only a handful of different buffer sizes to try, in order to execute an overflow
attack against our unwitting SETI researchers.

Our ET villains need to make other assumptions about our technology as well. In
order for a buffer overrun attack to be fairly effective, the buffer overrun needs to,
with very high probability, immediately affect the flowofcontrol of a running
program. The currentlydominant computer architectures here on Earth have evolved
an architectural curiosity called the “stack”. The “stack” is an area in memory that is
usually used to contain transient variables such as local variables within a subroutine,
saved copies of the control and data registers of the CPU, and the socalled “return
address”the address that program flow is to return to when the subroutine finishes.
There are a variety of possible architectures that don't use the “stack” concept, and
several extant in current human endeavor, but let's assume that our ET has at least
heard of the concept, and understands the implications for malicious code.

The stack on a subroutine call typically looks like this:

return address
saved register 1
saved register 2
saved register 3
...
saved register N
local variables

Together, that collection of “stuff” on the stack is called a stack frame. The details
vary quite a bit from CPU architecture to CPU architecture, but the concepts remain

the same. It's important to note that in general the stack grows downwards, while the

regular program data (the heap) grows upwards. It's generally the case that the stack
starts at a very high (virtual) address, while the instructions and heap data start at a
very low (virtual) address. The “goal” of a buffer-overrun targeted at the stack is to
precisely replace the return address with an address that points to within the memory
occupied by the buffer we just overran. This scheme works very well for overrunning
buffers that are declared as local variables (and thus allocated on the stack). A buffer
of 512 bytes, for example, will be allocated 512 bytes on the stack, with indexes into

the buffer growing upward, towards the return address and saved registers. Hackers

here on earth know this, and take ruthless advantage of it, but only against programs

that are known in detail in advance. The precise layout of the stack is dependent on
the language compiler that produced the program, and the architecture the program is
running on. Further, the precise relative locations of local variables, and the buffer

we wish to attack is exceedingly important in mounting a stack-smashing buffer

overrun attack. Hackers here on earth get this information either through examining

the relevant source code, or examining and reverse engineering the machine-code

binary executable rendition of the victim programs. There has been some small

amount of research into so-called blind stack smashing attacks
3
 here on earth, but

such attacks require two-way feedback—the so-called black box approach. Our ET
vandal doesn't have the luxury of seeing the source code, or even getting to reverse-
engineer the binary executable code.

They must necessarily use a random approach to the attack problem. They are further

hampered by being entirely unaware of the predominant source language of our

computer programs, nor are they aware of the idiomatic constructions emitted by our
compilers when translating source code to machine code. It is precisely these idioms
that hackers take advantage of when attacking actual programs (that, and human
programmer frailty—properly-constructed programs cannot be attacked through their
data inputs).

We need, then, to establish the magnitude of the problem our ET miscreants face
when trying to blindly, randomly, attack the SETI researchers computers (and by
computer viral propagation, the rest of the computers on the planet).

The stack frame problem

Before one can smash a stack, one needs to have some estimates as to its layout. The
previously shown “typical” layout for a stack frame is, of course, entirely useless in
practice. In practice, there are an unknown number of CPU registers, of an unknown
size, and virtual addresses are also of an unknown size. We can be extremely
generous, and assume that our ET has concluded that we use 32-bit addresses and
instruction words, and that our “register file” on the stack is between 8 and 64
registers, of either 32 or 64 bits per register. Somewhat surprisingly, virtual
addresses of roughly 32 bits have been a technological constant in computer
architecture since the 1960s—while detailed architectures have changed radically in
the last 40 years or so, virtual addresses of roughly 32 bits are a very good bet, along

3 See, for example: http://www.ngssoftware.com/papers/NISR.BlindExploitation.pdf

with CPU integer registers of roughly the same size. Having determined our rough
technological advancement level through our TV and radio transmissions, our ET
friends might derive a virtual address and register size somewhere in the
neighborhood of 32 bits.

The fact that register sizes are roughly 32-bits means that they can assume that the
stack starts somewhere around 0xFFFFFFFF, and grows downwards, and that the
program and heap data starts somewhere around 0x00000000, and grows upwards.
For a typical modern computer program, there may be several 10s of kilobytes on the
stack at any point in the life of an executing program—possibly an order of
magnitude more if most subroutines allocate buffers from the stack. Let's assume
that our ET knows that stack addresses start at 0xFFFFFFFF and grow downwards to
somewhere around 0xFFFD0000. In the real world, however, different operating
systems layout the virtual address space differently. On on recent Linux systems, for
example, the stack starts somewhere around 0xBFFF0000, but the actual value
appears to be different from run to run—perhaps to deliberately interfere with stack-
smashing attacks. If you don't know exactly where the stack starts for a given
program, it's hard to build a “generic” attack, since you need to know actual virtual
addresses.

Here we see a code snippet from a typical C program:

int a, b, c;
unsigned char buffer[1024];
double foo;
double bar;

. . .

[the code of the subroutine]

return;

The attacker assumes that somewhere in the “code of the subroutine”, the code takes

data from an external source, and stuffs it into buffer. The assumption is that the code
doesn't adequately check for overflow of the buffer, which allows the hacker to
overwrite the values for a, b, c, and the rest of the stack frame, including the return
address where execution will resume after the subroutine finishes its work. Our ET
doesn't know anything about the subroutine, so they can only guess about the relative
positioning of a buffer, any local variables that may be higher in memory than the

buffer, and the contents and extent of the stack frame. The only thing our ET really
knows is that it will be radio-astronomy software that will be receiving and
processing their bit stream. This constrains the problem somewhat, but it's still a
formidable task. For sake of argument, let's say that there are 1.0e8 possible stack
layouts corresponding to radio-astronomy software designed for receiving trivially-
modulated SETI signals. Let's say that the stack layout part of our evil payload varies
between 256 bytes and 4096 bytes, in 4 byte increments. At 10kbytes/sec, that's
between 25milliseconds, and 0.4 seconds to transmit just the part that corresponds to
the stack layout. If we assume that only one of the 1.0e8 possible layouts is the actual
layout, then it will take between a month and 1.5 years just to send the data bits
necessary to “hit” the exact magic stack layout. Keep in mind that's just the amount
of data necessary to cause a buffer overrun to hit the return address on a stack whose
layout we're entirely, utterly, uncertain of. We haven't gotten to the part where we

actually make this magic do something, all we've done is overwritten the return

address on the stack. But, of course, we don't know that we've done that, since we

have only a one-way communication between our victim (the hapless SETI scientists
and their innocent computer software) and us. Which means that we can't build an
incremental approach to the attack—it's all or nothing. Which brings us to the next
part of our tough problem.

The instruction set and precise virtual addresses

The first part of the problem that's really tough is to place the correct virtual address
in the return address portion of the stack frame we've just accidentally, and with no

two-way feedback, smashed. We observed earlier that the stack concept, combined

with the notion of 32-bit address words implies that the stack may start somewhere
around 0xFFFFFFFF, although actual implementations must necessarily change this.
Some systems randomize the exact start address of the stack, in order to foil stack-
smashing code. The total number of stack frames currently on the stack, and their
aggregate size, is unknown to the attacker. But let's make some very generous
assumptions, and assume that the total stack-frame aggregate for any program in the
class of programs previously described (SETI radio astronomy software) varies over
a range between a few hundred bytes, and a few hundred thousand bytes. That leads
to virtual addresses that are in the stack that vary by only a factor of a thousand or so.
The top of the stack will be somewhere “up there” in most implementations. For sake
of argument, let's say there's only about 64 different possible “top of stack”
addresses, with some fuzzing of perhaps a few million addresses. Current Linux, for

example, seems to fuzz the stack top over a range of roughly 8 million addresses. It
would be reasonable to assume an uncertainty in top-of-stack address of perhaps
1.0e7 addresses. Which means that when we modify that return address, we have a
total uncertainty of roughly 1.0e9—which is perilously close to the maximum
number of addresses that can be represented by a 32-bit integer!

Our attack vector has an uncertainty of roughly 1.0e8 uncertainty in stack layout,
multiplied by an uncertainty of 1.0e9 in the virtual address it needs to “paste” into
the return address field on the stack frame. Combining these two uncertainties, the

probability of any given trial succeeding against our program has a lower bound

somewhere around 1.0e-17. How long will it take to transmit these still-not-fully-
fleshed-out attack vectors? Roughly 80 million years, although, on average, one can
expect success in half that time—that's assuming the roughly 10kbytes/sec in the
Carrigan hypothesis.

Let's assume that we've successfully pasted the return address with a correct value—
a value that lies somewhere in the data-buffer that we control. What to put into that
data buffer? Our attacker needs to have something to put in there that will be
particularly devastating, hard to detect, and propagates quickly and stealthily. We'll
give our attacker the benefit here of running into particularly non-security-savvy
SETI scientists, who run their analysis tools with so-called “root” privilege, in order
to effect maximum devastation. Here's a lethal little code snippet, that would work on
a Linux system:

#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
main ()
{

int in, out;
int i;
char buffer[1024];

in = open ("/dev/urandom", O_RDONLY);
out = open ("/dev/hdXX", O_WRONLY);

for (;;)
{

read (in, buffer, 1024);
if (write (out, buffer, 1024) != 1024)
{

break;
}

}
}

This piece of code overwrites a system-disk with random data. It likely won't run to
completion before the system crashes, but it serves to show an example of a class of
programs I call “minimal lethal payloads”--that is, program payloads that are short,
and nearly immediately lethal to the “host”. The above program compiles to roughly
1200 bytes on a modern Linux system, but one can assume that a hand-coded
assembler program could compact this number down by perhaps a factor of 3. So, the
lethal part of the payload may be around 400 bytes. Our ET doesn't know anything
about the instruction set of its victim, and it certainly doesn't know anything about
files system layout, the mechanisms behind system calls, etc, etc. Exactly how many
400-byte sequences are there? Really a lot—roughly 1.0e980 of them. That's right—
1 with 980 zeros after it. The density of such sequences that are semantically useful
programs in the target environment is very low, further, the number that are
immediately system-lethal is even lower. Let's make a wild-eyed guess and say that
there are maybe 1.0e8 immediately system-lethal programs that are 400 bytes in
length. The actual number may be several orders of magnitude lower or higher. What
does that do for our numbers—it means that roughly once every 1.0e972 trials, we
emit a 400-byte sequence that is immediately system-lethal. To calibrate these

numbers, the famous Slammer worm payload was 376-bytes in length
4
. Note that the

Slammer worm had no actual “payload” beyond propagation—the only harm it did
was slowing down your computer and network interfaces as it tried to propagate to
other vulnerable systems on your network.

But we really don't want a “payload” that is immediately system lethal. Immediate
lethality is an extraordinarily bad strategy for any virus, computer or biological. Let's
assume that our ET virus also needs a propagation phase. Let's be generous, and
assume that a further 400 bytes is required to encode the propagation phase. Which
means a total payload of perhaps 800 bytes. The total number of 800-byte sequences

4 See: http://www.cert.org/advisories/CA200304.html

is truly enormous—roughly 1.0e2000 sequences. Let's assume that there's a large
number of possible 800-byte propagate-then-exterminate viruses possible in this
sequence. There's possibly as many as 1.0e9 such sequences in that space, which
means that roughly once every 1.0e1991 sequences, we'll hit on one at random that
has the desirable propagate-then-exterminate properties. At the Carrigan-hypothesis
rate under discussion (10kbyte/sec), it would take a very long time indeed to transmit
all the necessary sequences. Emitting even a minuscule fraction of such sequences
before the heat death of the universe is left as an exercise for the reader.

When we combine the probabilities of successful stack-smashing (roughly 1.0e-17)
with the problem of generating a semantically-useful program of roughly 800-bytes,
we get an overall probability for a single trial of somewhere around 1.0e-2008.

Propagation phase

Any successful apocalyptic “worm” must necessarily have a propagation phase.
While sending a “kiss of death” payload across the light years to cause some hapless
SETI researchers computer to crash might seem amusing, to really foul things up, our
little ET worm has to actually propagate to other computers on the planet, so that
they may also participate in the remote-control planet-domination considered in the
Carrigan paper.

This immediately brings us back to the architecture-guessing problem discussed
earlier. Our ET has no way of knowing how our planet-spanning digital computer
networks actually work. Since the 1960s, there have been a very-large number of
such computer network architectures. It is only through a set of extraordinary
circumstances that most of the planets computer systems currently speak using the
TCP/IP protocol suite.

There were a very large number of equally-viable alternatives that we didn't pick, but
were in widespread use until fairly recently. Architectures like X.25, Chaosnet,
ARCNet, NetBios, DecNET (Phase 1 through 5), the OSI protocol stack, DataKit,
UUCP, NCP, SNA, PUPNet. For a while, it was in-vogue for grad students to invent
entirely-new network architectures for local-area-network computing, which surely
created thousands more dead-ends. But the total number of possible globe-spanning-
network architectures for a civilization that has standardized on binary logic systems
for both information transfer and machine logic, s very large indeed.

We have to assume that correctly guessing which of the many-possible network
architectures the planet is actually using is at least as hard as guessing the dominant
CPU architecture.

Conclusions

The scenario described in the Carrigan paper is clearly based on his limited expertise
in computer science and computer architecture—the arguments with respect to link
budget for maintaining a high-speed one-way link are beyond reproach, but the
arguments involving the computer-science aspects are based on inadequately-
informed speculation. It is hoped that this paper fills in the information vacuum left
by the Carrigan paper. Even when we make exceedingly generous assumptions about
the predictive abilities of our hypothetical ET hacker, we come up against
overwhelming odds against the ET. An extinction-class asteroid impact is a vastly
more worrisome scenario than computer viruses from ET, by several orders of
magnitude.

We conclude, with apologies to the film “Independence Day”, that SETI-hacker
scenarios are only plausible within the fanciful confines of Hollywood, and then only
when our ET hackers happen to be Macintoshsavvy.

It is amusing to observe that the SETI hacker “threat model” is one of the very few
that is adequately countered by the “security through obscurity” doctrine that is
generally held in such low regard by both the author, and the computer security

community in general. Indeed, it is precisely this obscurity that protects us nearly-
unconditionally from the hypothetical threat of blind viral attacks by ET hackers.

While one cannot recommend a cavalier attitude with respect to software quality
used by our SETI researchers, it's a near-certainty that computer viruses from outer
space will not be one of the threats that need to be defended against. Indeed, it seems
likely that the religious and social upheaval that would be caused by the mere
existence of an ET signal would have more far-reaching societal consequences than
the content of that signal. Indeed, under the assumptions in the paper, the content
will be uniformly random rubbish, with a probability approaching unity.

Acknowledgments

The author gratefully acknowledges the thoughtful comments of Dr. Paul Shuch of
the SETI League, and Dr. Steven Bellovin, CS Department, Columbia University.

